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Abstract

In a recent article, Zachary Neal (2011) distinguishes between centrality and power
in world city networks and proposes two measures of recursive power and centrality.
His effort to clarify oversimplistic interpretations of relational measures of power
and position in world city networks is appreciated. However, Neal’s effort to inno-
vate methodologically is based on theoretical reasoning that is dubious when applied
to world city networks. And his attempt to develop new measures is flawed since he
conflates ‘eigenvector centrality’ with ‘beta centrality’ and then argues that ‘eigenvec-
tor-based approaches’ to recursive power and centrality are ill-suited to world city
networks. The main problem is that his measures of ‘recursive’ centrality and power
are not recursive at all and thus are of very limited utility. It is concluded that estab-
lished eigenvector centrality measures used in past research (which Neal critiques)
provide more useful gauges of power and centrality in world city networks than his
new indexes.

Introduction

As scholars interested in world city network
research, we were intrigued by Zachary
Neal’s article, ‘‘Differentiating centrality
and power in the world city network’’. For
decades, urban researchers have focused on

systems of cities (McKenzie, 1927; Ross,
1987), frequently emphasising the ‘domi-
nance’ of key nodes in these networks; more
recently, key theorists have identified ‘world
cities’ or ‘global cities’ as key ‘basing points’
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and centres of ‘command-and-control’ for
global capitalism (Friedmann, 1986; Sassen,
1991). This led to considerable empirical
research using network analytical tech-
niques to study the world city network (see
Smith and Timberlake, 2001; Alderson and
Beckfield, 2004; Taylor, 2004).

In most of this research, the notion that
‘centrality’ is related to ‘power’ is crucial;
but Neal questions any assumption that the
two are equivalent. Unfortunately, while we
deeply appreciate Neal’s effort to clarify
oversimplistic interpretations of world city
networks, we take issue with his attempt to
differentiate centrality and power, his cri-
tique of eigenvector centrality and his alter-
native measures.

Conceptual Confusion

A clear contribution of Neal’s paper is his
recognition that ‘centrality’ and ‘power’ are
not necessarily synonymous and that both
depend not only on the ties a focal actor
has with its neighbours, but also on the ties
the actors in its neighbourhood have with
their alters. In so doing, Neal differentiates
between two kinds of centrality—one in
which an actor is tied to other actors who
are themselves central, and another in
which an actor is tied to other actors who
are themselves isolated. He refers to the
former as recursive centrality and the latter
as recursive power.

Yet, his discussion of ‘power’ and ‘cen-
trality’ eventually falls flat. For example, he
offers a graph of two hypothetical world city
networks (Neal, 2011, Fig. 1) that illustrate
one simple network (network B) with a cen-
tral point and three connected nodes on
spokes and a larger network (network A) in
which a similarly positioned central point is
connected to other nodes that are, in turn,
connected to three more points. Neal claims
that the central node in the smaller network

is ‘‘powerful, but not central’’ and the centre
of the larger network is ‘‘central, but not
powerful’’. Yet, the ‘‘powerful’’ actor in net-
work B is also the most central by any mea-
sure of network centrality as this is a perfect
star graph. In short, while we agree that not
all central actors are powerful and that both
‘power’ and ‘centrality’ should be consid-
ered recursively, Neal does not effectively
demonstrate that powerful actors won’t also
be central (also see Allen, 2010; Bonacich,
1987).

Moreover, the notion of power advo-
cated by Neal draws heavily from exchange
theory (for example, Neal, 2011, p. 2736).
While we take no issue with exchange theo-
retic conceptualisations of power in general,
we find them odd in the empirical case of
many world city networks. Let us imagine
two cities in the case of between-city air
passenger flows—city A and city B. City A is
central in the recursive sense: it is not only
connected to many cities, but also to many
cities that are themselves central. City B is
connected to many cities that are only con-
nected to city B. If cities A and B were enga-
ging in barter trade, city B would clearly
have more power to determine the‘‘ex-
change ratio’’ (i.e. the ratio of goods sent to
goods received) with its neighbourhood.
However, in a network of air passenger

Figure 1. Spring embedding of Friedmann
city graph.
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flows, it is not clear that cities are exchan-
ging anything where bargaining power
would matter; that is, it is not entirely clear
what is being bargained. One can ask simi-
lar questions with respect to intercity band-
width connections, headquarter subsidiary
relations, etc. In short, we are sceptical that
bargaining power in exchange networks is
the only way in which power can be concep-
tualised for world city networks; indeed, it
may not make much sense in many empiri-
cal contexts for these relations—a point
that may extend to research on world-city
networks beyond Neal’s.

Early in his paper Neal focuses on degree
centrality, claiming that it is ‘‘the most
widely employed measure’’ used to gauge
world city networks and noting that it
simply involves ‘‘counting a city’s total
number of linkages’’ (Neal, 2011, p. 2737).
While there is published analysis that uses
this measure, many key studies use various
types of valued and/or ‘recursive’ measures
including eigenvector centrality (Smith
and Timberlake, 2001), ‘betweenness’ and
‘closeness’ (Alderson and Beckfield, 2004).
Although Neal mentions these additional
techniques in passing he summarily dismisses
this family of recursive measures as ‘inap-
propriate’ for world city networks for various
reasons. The remainder of his article contrasts
his ‘recursive’ centrality measures to simple
degree centrality. He thus proceeds from an
assumption that established recursive central-
ity indices, such as eigenvector and between-
ness, are inappropriate to world city networks,
which we show to be erroneous.

Measuring Power and Centrality
Recursively: A Re-analysis of
Friedmann Based on Eigenvector
and ‘Recursive’ Centrality

The major thrust of our concern with the
paper deals with the measurement of

centrality and power, recursively. First, Neal
repeatedly uses the phrase ‘eigenvector-
based measures of centrality’, but it is not
entirely clear what he means. He cites two
seminal papers by Bonacich, one introdu-
cing ‘eigenvector centrality’ and the other
introducing ‘beta centrality’, which are both
conceptually and computationally unique.
In any case, he seems to believe that both
are inappropriate to world city networks for
two reasons. On the one hand, such mea-
sures are inappropriate to networks with a
high degree of ‘clustering’, which appears to
be the case when the second eigenvalue is
‘‘large’’ relative to the first (p. 2740). On the
other hand, ‘‘eigenvector-based measures’’
of centrality are allegedly inappropriate to
‘‘large’’ networks, or to networks with many
strong ties, which leads to a situation in
which the first eigenvalue is ‘‘too large’’
(Neal, 2011, p. 2740). We show that not
only are Neal’s measures of ‘recursive’
power and centrality hardly any more recur-
sive than degree centrality, but also that his
criticisms of eigenvector centrality (as
opposed to beta centrality) are unfounded.

First, we must point out that his two
‘recursive’ formulas are in no sense ‘recur-
sive’. An example of a recursive definition
is that of the factorial function, where n! is
defined in terms of smaller values of the
function: n! = n(n–1)!. To avoid an infinite
regress, we must define 0! = 1. Another
example is the definition of a (general) tree
as a root to which is attached a (possibly
empty) sequence of trees. By way of con-
trast, his recursive centrality is defined in
one step

RCi =
X

i

RijDCj ð1Þ

If we use c0 for degree centrality and c1
for ‘recursive’ centrality we see that equa-
tion (1) can be expressed as a matrix times
a vector
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c1 =Rc0 ð1aÞ

In fact, degree centrality itself can be
expressed as the product R1, where 1 is the
vector of all 1s. If we continue this process,
the numbers in the vectors get either too
large or too small, so to keep them in the
middle range divide by the Euclidean norm
of the vector, so we have

ck+1 =
Rck#1

ck#1k k
: ð1bÞ

Since this process is known to converge, we
will find a large enough integer n such that
cn is close to cn#1. When this occurs, we
know that Rck#1k k is approximately equal
to the largest eigenvalue l1 and that cn is
approximately equal to its eigenvector. It is
customary to normalise the eigenvector to
be of unit length (and not make the largest
value equal to 1 as did Neal). While this is a
terrible way to compute an eigenvalue
(compared with, say, the ‘shifted inverse
power method’ (Strang, 1988)), it does put
three of the centrality measures in perspec-
tive: degree centrality is the first-order
approximation to eigenvector centrality,
while ‘recursive centrality’ is the second-
order approximation. Convergence is slow,
because of the relatively large second eigen-
value, but after 30 iterations, we found that
the root mean square error for the normal-
ised eigenvector was 0.0000055, while Ackk k
was only 7:53310#10 smaller than the
eigenvalue l1.

We display a re-analysis of the
Friedmann data and compare degree,
‘recursive centrality’ (reCent), ‘‘recursive
power’’ (rePower) and eigenvector central-
ity (eigen) in normalised form in Table 1.
In doing so, we first had to unpack some
discrepancies between Neal’s Figure 2 and
Table 1 (Neal, 2011, p. 2741). Using the
original graph of ‘‘Friedmann’s world city
network’’: Tokyo is of degree 7, not 6, and

‘‘Rio/São Paulo’’ is of degree 5, while Neal’s
figure has a node labelled ‘‘São Paulo’’ of
degree 3 with the corresponding label in
Table 1 being ‘‘Rio de Janiero’’ of degree 5.
(Also, he omits links to Tokyo, Mexico
City and New York, while putting in a link
to Caracas that does not appear in
Friedmann’s Figure 2.)

In our initial critique of Neal submitted
to the journal, we assumed (as no doubt
most readers would) that the matrix he
analysed was identical to the erroneous
reproduction of the Friedmann graph.
However, we learned later that Neal’s Table
1 reports centrality scores for Friedmann’s
original graph. So, we recalculated based on
Friedmann’s original figure, as drawn in
our Figure 1 with standard ‘‘spring embed-
ding’’. To resolve the Rio/São confusion,
we use the label ‘‘Rio’’ throughout.

Note that Singapore starts out with a
degree centrality of 0.354, then falls to
0.308 in the second-order approximation
(i.e. ‘recursive centrality’), before increasing
again to its limiting eigenvector value of
0.341. This is because two of its neighbours,
Bangkok and Manila, have a relatively low
degree of 2. Other cities show a different
pattern because the eigenvector takes
account of all possible long-distance walks
on the graph, rather than simply the degree
of each member of a city’s neighbourhood.
This analysis is further confirmed by con-
sidering in Table 2 the correlations between
the measures: degree is highly correlated
with ‘recursive centrality’, which in turn is
even more highly correlated with eigenvec-
tor centrality. Finally, degree and eigenvec-
tor centralities are less highly correlated
than are ‘recursive centrality’ and degree. It
appears that, rather than eigenvectors,
‘recursive centrality’ is ‘‘equal or nearly
equal to . ordinary degree centrality’’
(Neal, 2011, p. 2743).

Also notice in Table 2 that ‘recursive
power’ has a low correlation with the
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previous three. The last column of Table 1
is a normalised listing of recursive power
values defined by the formula

RPi =
X

j

Rij

DCj
ð2Þ

This expresses a kind of ‘relative power’
for a node which increases as its degree

increases and as the degrees of its neigh-
bouring nodes decrease. For a given degree,
the maximum ‘recursive power’ is when
each node in its neighbourhood is 1: the star
graph. Like the ‘recursive centrality’ index,
its (un-normalised) value is a function only
of its local neighbourhood, and not of the
graph as a whole. Hence, they both (along
with degree centrality) will have limited

Table 1. Normalised centrality measures of Friedmann cities

City Degree reCent eigen rePower

Los Angeles 0.354459 0.37607 0.425756 0.269955
Singapore 0.354459 0.307694 0.340879 0.362457
Tokyo 0.354459 0.330486 0.380029 0.341314
Chicago 0.303822 0.284901 0.305221 0.273731
New York 0.303822 0.273505 0.223908 0.288078
London 0.253185 0.205129 0.116768 0.335651
Rio 0.253185 0.262109 0.216647 0.279017
Mexico City 0.202548 0.216525 0.225663 0.146871
Miami 0.202548 0.205129 0.183967 0.17179
Paris 0.202548 0.102565 0.03617 0.428153
Hong Kong 0.151911 0.136753 0.123742 0.1548
Houston 0.151911 0.193733 0.208587 0.088727
San Francisco 0.151911 0.227921 0.242245 0.071736
Sydney 0.151911 0.239317 0.25002 0.067961
Taipei 0.151911 0.136753 0.125332 0.1548
Bangkok 0.101274 0.113961 0.101307 0.075512
Caracas 0.101274 0.113961 0.088933 0.066073
Madrid 0.101274 0.102565 0.033347 0.071359
Manila 0.101274 0.159545 0.157188 0.045307
Seoul 0.101274 0.113961 0.110189 0.075512
Toronto 0.101274 0.136753 0.115372 0.052858
Buenos Aires 0.050637 0.05698 0.047238 0.031715
Johannesburg 0.050637 0.05698 0.02546 0.031715
Milan 0.050637 0.045584 0.007887 0.039644
Vienna 0.050637 0.045584 0.007887 0.039644

Table 2. Correlations between centrality measures

Degree reCent eigen rePower

degree 1 0.918785 0.846041 0.869256
reCent 0.918785 1 0.968133 0.632839
eigen 0.846041 0.968133 1 0.50975
rePower 0.869256 0.632839 0.50975 1
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interest in network studies on world cities.
The indices that will have more interest,
because they reflect the network structure as
a whole, include betweenness and eigenvec-
tor centralities. As an aside, betweenness
centrality has been generalised to valued
data, so that, contrary to Neal’s claim, it is
perfectly suitable to world city networks
with valued ties (Freeman et al., 1991).

It is interesting to note that, if ‘recursive
power’ is iterated, as we did with ‘recursive
centrality’, then there is extremely slow con-
vergence to a vector with a single 1 (for
Paris) with the rest being 0. London is the
last to approach 0: after 1000 iterations, its
value is 0.002, while the third-largest city
has a value of 2310#150. While the French
might like the idea of Paris being omnipo-
tent, this approach does not seem promis-
ing to us.

Erroneous on Eigenvectors

One target of Neal’s critique is eigenvector
centrality measures that were employed in
recent work on world city networks (for
example, Choi et al., 2006; Mahutga et al.,
2010; Smith and Timberlake, 2001). To show
that these sorts of measures do not work
with real data, he provides information on
international city-to-city bandwidth capacity
on the Internet. He says (p. 2743) of the
internet data ‘‘eigenvector-based measures
. are not appropriate because the network’s
largest eigenvalue (l1 = 178231.55) is too
large’’.

However, this concern is misguided. The
absolute size of the first eigenvalue has abso-
lutely no bearing on the utility of eigenvec-
tor centrality. The proof is simple—if l is an
eigenvalue for the vector v and matrix A,
then Av = vl. Changing units is equivalent
to multiplying both sides by a scalar c, giving
cA= v(cl), showing that cl is an eigenvalue
for cA, leaving the eigenvector unchanged.

The second issue Neal raises concerns the
size of the second eigenvalue relative to the
first, which is presumably related to his other
concern about networks with too much
‘clustering’. He states (p. 2740) that ‘‘eigen-
vector-based measures . are not appropri-
ate because the network’s second largest
eigenvalue (l2 = 3:45) is relatively large com-
pared with its first eigenvalue (l1 = 4:59)’’.
There is still no need to discard all these
results; instead, it suggests an examination of
the second eigenvector as well.

In the vaster literature on spectral analy-
sis of graphs, many of the eigenvalues are
interesting, including the second-largest.
The difference between the first and the
second-largest eigenvalues is called ‘the
spectral gap’ and is related to the speed of
convergence of Markov processes. It is also
important in the computation of eigenva-
lues by an obsolete method known as the
‘power method’, which is related to Neal’s
‘recursive centrality’. If the first eigenvalue is
at all larger than the second eigenvalue, then
the first eigenvector will give the best-fitting
global ‘recursive’ measure of centrality
except when the network consists of discon-
nected components, in which case each
actor on the smaller of the two components
will have zeros on the first eigenvector.
However, the second eigenvector will return
zeros for the larger component and non-
zero values for the second. Thus, we see little
value added by his ‘recursive’ measures even
in this case, since they are presumably moti-
vated by a desire for a global measure of cen-
trality. Indeed, if there is more than one
component (i.e. two networks instead of
one), one should consider measuring cen-
trality separately for each. Doing so in the
context of eigenvector centrality is well
understood and relatively straightforward—
one simply examines separate eigenvectors
for each component, which will be conveni-
ently weighted by their respective eigenva-
lues in a full eigen decomposition.
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Conclusion

Some of Neal’s general points and conclu-
sions are right. World city networks are
multiplex and any attempt simply to equate
‘centrality’ with the types of ‘power’ that are
critical to conceptual understandings of
world/global cities should be discouraged.
We also agree that ‘‘the conception of world
cities’ status in networks as a unidimen-
sional, hierarchical phenomenon’’ (p. 2745)
is misguided and oversimplified. Thus,
recursive conceptualisations of power and
centrality are often more meaningful than
non-recursive ones; if we take networks seri-
ously, then we should incorporate informa-
tion from the whole network in our attempts
to measure centrality and power. Doing so
will provide a more realistic understanding
of global city networks. Yet, we also think
that the meaning of power varies by the rela-
tion being analysed—a point made rather
persuasively in Bonacich’s (1987) interven-
tion. Moreover, Neal’s measures of ‘recursive
centrality’ and ‘recursive power’ are not very
recursive—the only additional information
they provide is limited to the degree of an
actor’s local ties, rather than the ties to those
ties, and their ties and their ties, etc. Finally,
we are much more confident in the utility of
eigenvector centrality as implemented in var-
ious studies of the world city network, which
provide a fruitful way to measure the power
and centrality of cities in the world city
system.
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